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SEPARATION SCIENCE AND TECHNOLOGY, 16(4), pp. 325-364, 1981 

Gradient Hydroxyapatite Chromatography with Small 
Sample Loads. 1. Fundamental Theory 

TSUTOMU KAWASAKI 
LABORATOIRE DE GENETIQUE MOLECULAIRE 
INSTITUT DE RECHERCHE EN BIOLOGIE MOLECULAIRE 
FACULTE DES SCIENCES 

PARIS 5 .  FRANCE 

Abstract 

On the basis of experimental data, it can be deduced that, on a hydroxyapatite 
column, the effect of thermodynamic longitudinal diffusion of molecules is 
“hidden” within diffusion occurring due to the heterogeneity in the flow rate 
of the solution. This can be assumed to occur caused by the heterogeneity in 
interspaces among hydroxyapatite crystals packed in the column. The chro- 
matographic process is virtually a quasi-static process. By taking into account 
the longitudinal diffusion in the column, a theory of hydroxyapatite chromato- 
graphy was developed for small sample loads for the linear gradient elution. 
The chromatographic mechanisms are fundamentally different between 
gradient and stepwise chromatographies. No theories that have been developed 
over many years for stepwise chromatography are applicable to gradient 
chromatography. Relations of the present theory to both classical “equilibrium” 
and recent “rate” theories are discussed. 

INTRODUCTION 

The chromatographic behavior on hydroxyapatite (HA) columns of any 
single component in a mixture is independent of the other components 
with small sample loads. The width of the chromatographic peak of a 
single component is independent of the sample load; it is the height of the 
peak that is proportional to the load. These facts have been verified experi- 
mentally ( I ) .  A theory was developed (2-6) for the case of small sample 
loads in a linear molarity gradient of competing ions (for competing 
ions, see below). In this theory, however, the effect of the longitudinal 
molecular diffusion in the column was not taken into consideration. 
(In Ref. 4, this effect is partially considered, however. For some comment 
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326 KAWASAKI 

on Ref. 4, see Ref. 7, Appendix 11.) The purpose of the present paper 
and a subsequent paper (8) is to extend the earlier theory (2-6) to a theory 
in which account is taken of this effect. In a subsequent paper (9)  the 
present theory (and the theory in Ref. 8)  will be confirmed experimentally. 

Usually the sample initially adsorbed at the top of the column forming 
a narrow band is eluted from the column by increasing the ion concentra- 
tion of the buffered solvent (in many instances sodium or potassium 
phosphate buffer, pH z 6.8) stepwise or gradually; a linear molarity 
gradient is often applied. In gradient elution, when the ion concentration 
reaches some value, the band begins to broaden and to migrate. It is 
common practice that the chromatogram appears over a considerably 
large volume of the solvent. For instance, in a series of experiments with 
lysozyme where the initial band at the column top has a width much less 
than 1 cm, the chromatogram appears over 5-70 mL of the solvent when 
the column diameter is 1 cm (see Fig. 6 in Ref. I ) .  This volume should 
extend over a range of about 10-100 cm provided it exists in the interior 
of the long column, since the interstice of the packed crystals occupies 
about 80% of the total volume (10). However, this does not mean that the 
band of the migrating molecules extends over this range in the interior of 
the column. The band should extend, in general, within a smaller range 
because the molecules only partially exist in solution or the mobile phase; 
they partially exist on the crystal surfaces of HA or in the stationary phase. 

The flow rate applied is usually in the range of about 0.1-1 mL/min 
when the column diameter is I cm. I t  is important to note that, in spite 
of a variation in the flow rate, virtually no deformation of the chro- 
matogram or the change in elution molarity is observed with gradient 
elution. Nevertheless, with gradient elution with small sample loads, it is 
observed that the width of the chromatogram increases with a n  increase 
in column length when it is high enough (see Fig. 6 in Ref. I or Fig. 1 in 
Ref. 9). This demonstrates that there is a longitudinal diffusion of mole- 
cules in the column. [Broadening of the initial band at  the column top at  
the beginning of the development process (see above) also demonstrates 
the existence of longitudinal molecular diffusion in the column.] In fact, 
unless there is longitudinal diffusion, the migration rate of molecules 
(or the R ,  value) in the rear part of the band (where the ion concentration 
of the buffer is high) should always be higher than that in the front part 
(where the ion concentration is low), and the width of the band should 
decrease with the migration of the band on the column; the R, should 
increase, in general, with an increase in ion concentration. 

It can, in general, be stated that the longitudinal molecular diffusion on 
the column is contributed to by two types of diffusion : (a) diffusion due to 
the heterogeneity in the flow rate of the solution within a vertical section of 
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the column. Without investigating the hydrodynamic mechanism (since 
this is unnecessary for our purpose), it can simply be assumed that the 
heterogeneity in the flow rate does occur caused by the heterogeneity in 
interspaces among HA crystals packed in the column. (b) Thermodynamic 
diffusion, which is defined in this paper as any diffusion occurring provided 
the flow rate of the solution is homogeneous within any vertical section of 
the column. The generality of this statement can be justified by the additive 
property of flux. Now, if the column is divided into a number of parallel 
hypothetical columns with diameters of the order of magnitude of the 
interdistances among HA crystals being packed (the hypothetical column 
will be called column A; see the section entitled “Outline of the Theory”), 
then in each microcolumn the effect of the first type of diffusion would 
be negligible. (“Parallel microcolumns” does not necessarily mean that 
the boundaries among them are microscopically smooth, and that they 
are always completely parallel with the axial direction of the total column. 
It is possible that the boundaries zigzag microscopically, fulfilling the 
condition that the flow is essentially homogeneous within each micro- 
column.) Since the coexistence of the mobile and stationary phases in 
a column (which is a fundamental condition necessary for the occurrence 
of chromatography) should be realized by thermodynamic diffusion, 
and since it is physically impossible to separate the longitudinal diffusion 
from the total thermodynamic diffusion (cf. Appendix II), the existence 
of thermodynamic longitudinal diffusion in a microcolumn is also a 
necessary condition for chromatography. It is reasonable to assume that, 
caused by the heterogeneity in interspaces among HA crystals, the flow 
rate of molecules fluctuates a t  random not only among different longitudi- 
nal positions on the same microcolumns but also among parts of different 
microcolumns existing within the same vertical section of the total column ; 
this brings about the first type of longitudinal diffusion. [“Diffusion due to 
the flow heterogeneity” is a concept that is intimately related to the concept 
of “eddy diffusion.” However, the definition of this latter (slightly) 
differs depending upon the authors. “Diffusion due to the flow hetero- 
geneity” is different a t  least from “eddy diffusion” defined, for instance, 
in Ref. I 1  (cf. Theoretical Section, “Several Important Parameters”).] 

Now, the fact that virtually no deformation of the chromatogram nor 
change in elution molarity occurs when the flow rate is changed but 
that an increase in the width of the molecular band does occur when the 
band proceeds on the column (see above) can be explained only by 
assuming that the effect of thermodynamic molecular diffusion is “hidden” 
within diffusion due to the heterogeneity in the flow (assumption a). Thus 
the rate of increase in the width of the band due to the former diffusion 
should be negligible in comparison with the rate due to the latter diffusion; 
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328 KAWASAKI 

the ratio of the rate of increase in the band width occurring caused by 
the heterogeneity in the flow rate to the mean flow rate should be constant 
(at least in the range of the variation in the mean flow rate examined 
experimentally; see above). 

In order to explain the independence of both the shape of the chro- 
matogram and the elution molarity from the mean flow rate of the solvent 
(see above), it is also necessary to introduce two further assumptions. Thus, 
even concerning the longitudinal diffusion of competing ions, the effect 
of thermodynamic diffusion should be negligible in comparison with 
the effect of diffusion due to heterogeneity in the flow rate (assumption b). 
This means that the longitudinal diffusions of both sample molecules and 
competing ions occur essentially in parallel on the column caused by 
heterogeneity in the flow rate. The chromatographic process is virtually 
a quasi-static process (assumption c) .  Thus, let us define an elementary 
volume 6 V representing the interstitial part, including the crystal surfaces 
of HA, of a vertical section of a microcolumn (see above). We assume that 
the width of the section of the microcolumn is of the same order of magni- 
tude as its diameter. It would be reasonable to assume that, in this volume 
(where the effect of heterogeneity in the flow rate is negligible; see above), 
the total numbers of both sample molecules and competing ions (see 
below) are, in general, large enough to be an object of thermodynamics. 
SV should nevertheless be much smaller than the volume of the solvent 
that passes through 6 V during the time interval in which the total molecular 
bond passes. The system SV, therefore, should have a property such that 
both the dimensions of the system and the (apparent) total numbers of 
molecules and ions involved in it are maintained almost constant within 
a time much shorter than that necessary for the total band of molecules 
to pass through 6 V but long enough for an equilibrium state to be virtually 
achieved. Thus, in this time interval, SV should virtually be a canonical 
system in which the total Helrnholtz energy is at  a minimal value. The 
ratio of the migration rate of sample moIecules to the mean migra- 
tion rate of the solvent occurring a t  any part of the molecular band should 
be equal to the partition B,, of molecules in solution or the mobile phase 
in the elementary volume SVexisting at that part. This is a first principle 
of chromatography (22 ) .  The value of B,, should be determinable from 
the equilibrium theory. 

The model which is chosen for the adsorption and desorption phenom- 
ena in a system 6 V is that adsorbing sites are arranged in some manner on 
the surfaces of HA. Sample molecules with functional or adsorption 
groups and particular ions from the buffer compete for these crystal sites. 
For reasoning behind this model, the reader is recommended to see, for 
instance, the Introduction in Ref. 6 and Appendix I in Ref. 12. Actually, 
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it can be deduced that two types of sites, called C and P sites, exist on 
different surfaces of a crystal (2,  3, 5 ,  6 ,  and Appendix I in Ref. l2) .  
Both the distribution and the stereochemical structures of these sites on 
the crystal surfaces were explored on the basis of crystallographic data 
with the aid of chromatographic data (5 ,6 ) .  It can be deduced that 
nucleic acids and nucleoside phosphates are adsorbed onto C sites by using 
phosphate groups. Acidic proteins and acidic polypeptides are adsorbed 
mainly onto C sites by using carboxyl groups. All these molecules compete 
with phosphate ions from the buffer that are also adsorbed onto C sites. 
Basic proteins and basic polypeptides are mainly adsorbed onto P sites 
by using basic groups, and compete with cations (sodium or potassium 
ions) from the buffer that also are adsorbed onto P sites (5 ,6 ,  and Appen- 
dix I in Ref. 12; for details, see 10, 13, 14). In many instances the adsorp- 
tion of molecules occurs virtually onto only one of the two crystal sites 
(2, 3, 14, and Appendix I in Ref. 12): this is the case treated in this paper. 
A theory in which the possibility of the adsorption onto both C and P 
sites is taken into consideration was developed in Ref. 3. 

On the basis of the competition model (see above), the partition B,, of 
sample molecules in solution (or the mobile phase) in a system 6 V can be 
represented as a function of molarity, may, of competing ions in solution 
in that system. With small sample loads the density of molecules in the 
system 6 V  is small in the development process of chromatography. B,, 
is independent of the molecular density. The concentration of sample 
molecules in solution in system 6 V  is low throughout all the chromato- 
graphic process. With “retained” molecules, however, the molecular 
density on the crystal surfaces of H A  in 6 V generally is high in the initial 
band at the top of the column. With a high molecular density on the 
crystal surfaces, the value of B,, depends upon the concentrations of both 
the molecules under consideration and the molecules of other components 
of the mixture. As a practical matter, however, the chromatography 
is carried out independently of the initial value of B,, at the column top 
since, at any rate, this value of B,, is virtually zero. This is the reason 
why molecules are retained on the column. In Appendix I the function 
B,,(m,,) is given for the case when only a single crystal site is used for 
chromatography. 

THEORETICAL 

Outline of the Theory 

The general continuity equation for a flow of molecules (for a given 
component of the sample mixture) on a column can be written, by taking 
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330 KAWASAKl 

into account both diffusion due to the heterogeneity in the flow rate and 
thermodynamic diffusion (see the “Introduction”), as 

aR 
at 

div,(vR - DB grad, R - D,herm grad, C) + - = 0 

With small sample loads, this equation should hold independently of the 
presence of the other components of the mixture. The physical meanings 
of the symbols involved in Eq. (1) are: 

t = time. 
L = longitudinal position on the column the distance L apart from 

the top. 
R = total molecular density in the interstices, including the crystal 

surfaces, of a vertical column section a t  position L occurring at  
time t .  

v = migration velocity of molecules at  position L at time t occurring 
provided there is no longitudinal diffusion. v, therefore, represents 
a mean velocity, and v.R represents the corresponding mean flux 
of molecules migrating in the interstices, including the crystal sur- 
faces, of the column section. The flux v.R corresponds directly to 
the external driving force of chromatography; viz., gravity, pressure 
produced by the peristaltic pump, etc. 

C = mean molecular density (or the concentraion) in the interstitial 
liquid (i.e., the mobile phase) in the column section at  position L 
at time t .  

E = partition of molecules in the interstitial liquid in the column 
section, or the ratio of the amount of molecules in solution to the 
total amount in that column section. B, in general, represents the 
mean value of Bdy (see the “Introduction”) or BA (see below) in 
the column section, and it can also be defined as 

B = C/R (2) 
D and Dlherm = diffusion coefficients (with dimensions of length*/time 

concerning the longitudinal direction of the column) 
for diffusion due to the heterogeneity in the flow and 
thermodynamic diffusion, the corresponding fluxes 
being - DB grad, R and - Dtherm grad, C, respec- 
tively (see below). D is independent of the type of 
molecules whereas Dlherm depends upon it. I t  is 
apparent that, concomitantly with the migration of the 
total band of molecules on the column, the centers of 
molecular bands occurring in the interstices, including 
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the crystal surfaces, within the corresponding micro- 
columns (see the “Introduction”) are diffused from 
one another due to the heterogeneity in the flow. It can 
therefore be assumed that the flux concerning this 
diffusion is proportional to - grad, R. This flux should 
also be proportional to B because it must be propor- 
tional to the mean migration rate (due to diffusion) of 
molecules in the interstices, including the crystal sur- 
faces, of the column section, and this latter should be 
proportional to B. Hence the flux due to heterogeneity in 
the flow should finally be proportional to - I3 grad, R. 
It can simply be assumed that the flux due to 
thermodynamic diffusion is directly proportional to 
the concentration gradient, - grad, C, of molecules 
made in the interstitial liquid. 

Since actually the effect of thermodynamic diffusion is negligible in 
comparison with that of diffusion due to heterogeneity in the flow (see 
the “Introduction”), the relationship 

DB grad, R >> Dtherm grad, C 

should be fulfilled, and Eq. (1) reduces to 

a 0  
at 

div,(vR - DB grad, R) + - = 0 

(3) 

B is independent of the total amount of molecules in the column section 
(i.e., the quantity R) if the amount of molecules is small because, in this 
situation, the linear section of the adsorption isotherm is realized. With 
stepwise chromatography the migration of molecules on the column can 
be described by using Eq. (1) or (4) (see Appendix 111). With gradient 
chromatography, however, the value of B within a given section of the 
column changes with time t due to a change (with time t )  in molarity, 
m, of competing ions in the interstitial liquid in the same column section; 
m increases and B also increases gradually. Therefore, if the total amount 
of molecules in the column section is small, the increase in B with an 
increase in m should be carried out independently of the amount of 
molecules (see above). This means that with gradient chromatography 
it, as principle, is impossible to describe causally the migration of mole- 
cules on the column by using Eq. (1) or (4) (even though the conservation 
of the amount of molecules in a column section can be represented by this 
equation). This is because Eq. (1) or (4) gives a causal relationship between 
B (which is involved in v; cf. Eq. A7) and R whereas, with gradient 
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332 KAWASAKI 

chromatography, B is determined only by m independently of G! (see above; 
cf. Ref. 8). 

It should be considered, however, that even with gradient chromato- 
graphy, the migration of molecules on the column is describable by 
using a certain continuity equation because, even in this instance, the 
conservation of the amount of molecules should be predictable if the 
initial condition of chromatography is given. This leads to a consideration 
that, besides the actual flux of molecules occurring in the column, a 
certain flux should be conceivable; this flux, as a constituent of the new 
continuity equation, should play a fundamental role in gradient chromato- 
graphy. The existence of the fundamental abstract flux in gradient chro- 
matography can also be suggested from the consideration made in 
Appendix 11. In Ref. 8, the abstract flux is explored and the fundamental 
continuity equation for gradient chromatography (concerning this flux) 
is proposed. The equations representing the theoretical chromatograms 
are derived as a solution of the abstract continuity equation (see Appendix 

In the present paper the same equations representing the gradient 
chromatogram are derived by using another method. Thus the column is 
divided into a number of parallel microcolumns d (d = 1,2, . . .) having 
diameters of the order of magnitude of the interdistances among HA 
crystals being packed (see the “introduction”). We characterize the 
microcolumns in such a way that the volume of the solution that flows into 
any column A is the same within unit time interval. We calculate (1) the 
contribution of the band of molecules eluted out of column d to the total 
chromatogram as a function of molarity m, of competing ions that also 
are eluted out of the column A by assuming that there is no thermodynamic 
longitudinal diffusion in column d (for this assumption, see below), ( 2 )  the 
distribution of the jow among different microcolumns, and (3) the relation- 
ship between the local molarity m, and the mean molarity m in the last 
section at the bottom of the column. The fact that the effect of thermo- 
dynamic longitudinal diffusion is negligible in the actual column (see the 
“Introduction”) means that the effects of thermodynamic diffusion in the 
interiors of microcolumns are canceled out among different microcolumns. 
The assumption of no thermodynamic longitudinal diffusion in a column 
d introduced in Step (1) should be valid for the final result of the calcula- 
tion. Now the final chromatogram obtained under a given experimental 
condition that can be represented by a parameters (Eq. 25) can be written 
as a function of m as 

111). 
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where s, is the parameter characterizing the column A. Column I can be 
characterized in terms of the total interstitial volumes involved in it. s, 
is defined as proportional to these volumes (Eq. 22). K(s,) ds, is the proba- 
bility of the occurrence of column A characterized by a value of s, com- 
prized between s, and s, + ds,. K(s,) represents the distribution of the 
flow among different microcolumns (cf. Step 2) because the flow hetero- 
geneity in the total column is caused by the heterogeneity in interspaces 
among HA crystals packed in the column (“Introduction”). f,(m,, s,) is 
the contribution of the molecular band eluted out of column I (cf. Step 1). 
f,(m,, s,) dm, represents the probability that molecules are eluted between 
molarity m, and m, + dm, from a column A which is characterized by the 
parameter s,. [f,(rn,, s,) is a delta-function (see Eq. 17). Therefore, the 
meaning of f,(rn,, s,) dm, is j$fdm~ f,(m,, s,) dm,. Hereafter, the former 
symbolical expression will be used for any delta-function.] f,(m,, s,) 
(dm,/dm) drn, therefore, represents the probability that molecules are 
eluted between molarity m and m + dm from the actual column. m, 
can be considered as a function of m [cf. Step 3 ;  see the section entitled 
“Step 3 : Calculation of m,(m)”]. It can now be understood that f,(m,, s,) 
(dm,/dm) drn K(s,) ds, represents the probability that the contributions of 
the bands of molecules that are eluted from microcolumns with character- 
istic values between s, and s, + ds, of the parameter s, to the total 
chromatogram appear between molarity m and m + dm of the ions. This 
means that f,(rn) dm represents the proportion of the part of the actual 
chromatogram that appears between molarity m and m + dm, and that 
f,(m) represents the chromatogram itself. 

Step 1 : Calculation of f,(rn,, s,) 
In Appendix 11, two differential equations are derived that represent the 

idealized chromatographic processes with stepwise and gradient chromato- 
graphies occurring in the absence of any type of longitudinal diffusion in 
the column; these are the DeVault equation and a Wilson-type equation, 
respectively. For these derivations, it is assumed that the pore volume a 
per unit length of the column is macroscopically constant. Through a 
procedure similar to the derivation of Eq. (A13), but with some attention 
to the fact that the pore volume ci,6A (or the apparent pore volume 
a,* 6A; see the section entitled “Several Important Parameters”) per unit 
length of the microcolumn A depends microscopically upon the longitudi- 
nal position, a Wilson-type equation representing the idealized elution 
process occurring on column I provided there is no thermodynamic 
longitudinal diffusion : 
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can be derived where 

XI = (1 - BA)% (7) 
(cf. Eq. A4) represents the molecular density on the crystal surfaces in 
a section of the column A. In contrast with s in Eq. (A13) that is defined 
by Eq. (A12), in Eq. (6) s,, which is a function 

L 

s,(L) = 1 s,(L)dL 
0 

where 
g,(L) = -dm,/dL 

of L, is defined as 

(8) 

(9) 

represents the increase in local molarity of competing ions per unit 
length of the column A measured from the bottom to the top. g, fluctuates 
at  random around a mean value g with an increase of L due to the fluctua- 
tion in (apparent) pore volume per unit length of the column A (see the 
section entitled “Several Important Parameters”). 

Partition B, (Eq. 6) can be represented as a function of m, simply by 
replacing msy in Eq. (AI) with m, as 

It can be assumed that B, is virtually independent of a microscopic varia- 
tion in pore volume per unit length of the column A because it is by local 
equilibrium between the adsorbed phase and the solution in a microscopic 
region that the value of B, is determined. This equilibrium is achieved due 
to thermodynamic motion of molecules. Therefore, if B, changed due to 
a microscopic positional dependence in the pore volume, this change 
should be canceled out by thermodynamic diffusion itself. 

Corresponding to Eq. (A20), let us introduce a function 

m 

= 11 (cp’m, + ly‘ dm, 
4 min 

or its derivatives 
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where mi, represents the initial molarity of competing ions at  the beginning 
of the gradient. This should be the same for any column 1. As B, is virtually 
independent of the pore volume per unit length of the column I (see above), 
by substituting the first equality in Eq. ( I  1)  into Eq. (6),  

is obtained, which can be compared with Eq. (A13”). 
With small sample loads when the band of molecules with an infinites- 

imal width is formed intially at the top of the column, the initial condition 
for Eq. (13) can be written as 

[ X i l , = O  = 6(s,) (14) 
because, when m, = m,,,  then r = 0 (Eq. 11). Under the condition of Eq. 
(14), Eq. (13) has a solution 

K, = - r(m,)> (15) 
Due to the property of the delta-function, Eq. ( 1  5 )  only shows symbolically 
that the band of molecules with a very small width is formed at  a longi- 
tudinal position on the column I at which a relationship 

SA = r (mA (16) 
is fulfilled (cf. Eq. A23). Equation (15) does not give any information 
concerning the partition of molecules between the interstitial liquid and 
the adsorbed phase. This is consistent with the fact that the Wilson-type 
equation, Eq. ( 1  3), does not represent a continuity equation for the actual 
flow of molecules in the column; viz., it does not represent the conserva- 
tion of the amount of molecules in the interstices, including the crystal 
surfaces, in the column. Equation (13) is independent of molecules in the 
interstitial liquid (see Appendix 11). 

However, let us examine the following hypothesis: we consider the 
flow of molecules at a given position L on a given column 1. This position 
is characterized by a parameter sI. (Eq. 8). Then it should be observed that 
the value of the parameter r increases with a lapse of time because m, 
increases with a lapse of time (Eq. 1 I ) ;  all molecules appear at  a certain 
value of r.  The probability that the molecules appear between the value r 
and r + dr of the parameter r should be given by x, dr, where x, is defined 
by Eq. (15). This means that the probability that the molecules appear 
between molarity m, and m, + dm, of competing ions should be equal to 
x, [dr(m,)/dmA] dm,. The molecules that appear between molarity m, and 
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m, + dm, can now be interpreted to be those existing in the interstitial 
liquid in the column since m, represents the molarity in the interstitial 
liquid. This probability can also represent the probability that the mole- 
cules are eluted between molarity m, and m, + dml out of a column A 
with length L, or the column A characterized by the parameter s, (see 
above). The contribution f, of the band of molecules eluted out of 
column 1 to the total chromatogram can now be represented as a function 
of both m, and s, as 

Several Important Parameters 

We define 61 as the ratio of the volume of the solution that flows into 
a column 1 to the volume that flows into the actual whole column. Since 
the volume of the solution that flows into any column 1 is the same within 
a unit time interval (see the section entitled “Outline of the Theory”) 
the value of 61 is independent of the value of A, fulfilling the relationship 

6A = 1 s 
A local volume in the actual column that corresponds to the value of 
6A3/’ represents a canonical system 6 V (see the “Introduction”). 

Let us introduce a quantity a,(L) 61 that defines the pore volume per 
unit length of a column A or the total area of the interstitial part on a verti- 
cal section of the column 1 existing a t  a longitudinal position L. a,(L) 61 
corresponds to a with the actual column (see Eq. A7) but is a function of 
L. It can be assumed that a,(L) fluctuates microscopically at random with 
an increase of L around the mean value a. Provided that there are no 
exchanges of liquids among different microcolumns and that the liquid 
is incompressible, the flow rate on a column 1 should be inversely 
proportional to a,(L). The flow rate also should fluctuate virtually at  
random with an increase of L on a column 1. Actually, the exchange of 
liquids occurs among microcolumns. In this instance, it is possible to 
consider an apparent pore volume per unit length of the column 
1, a,*(L) 61, instead of a,(L) dA, and to attribute the variation in the 
flow rate on a column 1 to the variation in the value of a,*(L). It is 
reasonable to assume that ct,*(L) also fluctuates at  random with an 
increase of L around the same value ct as in the case of no exchanges of 
liquids (see above). However, the amplitude in fluctuation in ct,*(L) 
would be smaller than that for cl,@) because, in the former case, the fluc- 
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tuation would be partially canceled out by exchanges of liquids among 
microcolumns. 

It is to random fluctuation in the flow rate within each column A that 
the longitudinal molecular diffusion in the actual whole column is due 
(see above). I f  the mean flow rate in the actual column decreases, exchanges 
of liquids among microcolumns would increase within a time interval 
necessary for a unit increase in elution volume to occur. This might lead 
to the conclusion that the amplitude in fluctuation in a,*(L) decreases and 
that the longitudinal molecular diffusion in the whole column also de- 
creases with a decrease in the flow rate. This consideration is not true, 
however, since it should be to thermodynamic diffusion that the exchanges 
of liquids among microcolumns are mainly, or at  least partially, due. 
The shape of the experimental chromatogram is virtually independent 
of the flow rate if it varies within the range applied in common practice 
(see the “Introduction”). This means that, within this range of the flow 
rate, the total longitudinal diffusion of molecules in the column receives 
hardly any influence from a change in thermodynamic diffusion of the 
liquids among microcolumns. This change occurs due to a change in the 
flow rate within a time interval necessary for a unit increase in elution 
volume to occur. If the mean flow rate in the column is reduced until 
considerable exchanges of the liquids begin among the microcolumns, 
then the width of the total chromatogram must also begin to extend due to 
thermodynamic diffusion. Thus the condition of a quasi-static process 
(see the “Introduction”) is broken. This condition is also broken if the 
mean flow rate in the column is too high because, in this instance, the 
state of any  position in the column should be far from the equilibrium 
state. 

Let us again introduce a quantity defined as 
L 

0 
L;(L) = 1 ct:(L)dL (19) 

From this definition it is evident that L”(L) 61 represents the apparent 
total interstitial volumes involved between the top ( L  = 0) and a longi- 
tudinal position L on column A. The mean value L‘, concerning A, of 
,!,“(L) at position L can be represented as 

C ( L )  = aL 

because both cc,(L) and a,*(L) fluctuate at random with an increase of L 
around the same mean value CI (see above). L‘ also represents the total 
interstitial volumes involved between the top and position L of the actual 
column. 

It is now possible to define the probability 9(L;) dL1 that the apparent 
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total interstitial volumes involved between the top and position L on 
column I takes a value between L; S A  and L; SA + dL; SA. It can be con- 
sidered that the function 9(L;) is directly related to the distribution of flow 
in a vertical section, existing at position L, of the actual column. The 
probability 9(L;) dL; can be written as 

where 0 is a positive constant with dimensions of volume. Equation (21) 
can be derived as follows. First, the probability density 9(L;) should be 
represented by a Gaussian distribution around a mean value L’. This is 
because a,*(L) should fluctuate at  random not only with an increase of 
L when I is constant (see above) but also with an increase of A when L is 
constant; i.e., at  position L on the column, around the same mean value a. 
Therefore the integral of a,*(L) dL between the column top and position 
L, i.e., L;(L) (Eq. 19), should also fluctuate a t  random with an increase 
of I when L is constant. The mean value of L;(L) should be equal to the 
value of L’(L) (see above). Further, the maximum value of I can be 
assumed to be virtually infinity (see above). This means that 9(L’,) is 
a Gaussian distribution around a mean value L’. Second, the standard 
deviation of the Gaussian distribution should be proportional to the 
square-root of the distance L from the column top, or the square-root of 
L‘ (see Eq. 20). This is because the increase in width of a distribution of 
statistical elements, which is zero initially or when L’ = 0, is attributed to 
a random fluctuation of these elements occurring with an increase of L’. 

The parameter s, (Eq. 8) can now be represented as 

(22) 
g’ 
63, s,(L) = -L;(L) &I = g’Ll(L) 

where 

represents the slope of the molarity gradient of competing ions on column 
I ,  expressed as an increase in molarity per unit interstitial volume in 
column I measured from the bottom to the top. As the volume of the 
solution that flows into any column I is the same within a unit time 
interval (see above), g’ is a constant independent of both I and L. This 
means that g’ can also represent the gradient on the actual column 
(expressed as an increase per unit interstitial volume measured from the 
bottom to the top), or the increase in molarity per unit elution volume. 
Thus g’ can also be defined as 
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dm dm 
dL‘ dV 

g ‘ =  -- 

where it should be recalled that m represents the 

(24) 

mean or macroscopic 
molarity of competing ions in a section of the actual column. 

It  can be shown experimentally that the slope of the molarity gradient 
on a column is essentially equal to the slope that should occur provided 
there is no adsorption of the ions on the crystal surfaces of HA (see 
Ref. 7, Theoretical section P). This means that, even though the delay of 
the gradient occurs immediately after the gradient has been introduced 
because of the adsorption of the ions, any part of the gradient migrates 
(macroscopically) with the same rate after the initial delay on the column. 
This rate should be equal to the rate realized, provided there is no 
adsorption of the ions on the crystal surfaces. Thus molarity m of the ions 
in the interstitial liquid or the mobile phase on the column should be 
high enough, at  least except at  the beginning of the gradient, for almost 
all ions in a column section to be in the mobile phase (see Ref. 7, The- 
oretical section P). Therefore m or m, should be virtually independent of 
the adsorption and desorption phenomena of sample molecules in the 
column. This is confirmed experimentally (1). 

The final chromatogram should be expressed, instead of in terms of 
rn, and s,, in terms of macroscopic molarity m in the last section of the 
column and a macroscopic parameter s which is introduced by Eq. (A12), 
or by 

s = g’L’ = gL 

dm dm 
g = - - =  a- = ag’ dL dV 

where 

represents a mean slope (concerning A) of the gradient of competing ions 
on the actual column, expressed as the increase in molarity per unit length 
of the column measured from the bottom to the top. This is macroscopi- 
cally constant with a linear gradient. By comparing Eq. (25) with Eq. (8), 
it can be understood that s represents a mean value of s,(L). 

Step 2: Calculation of K(s,)  

By using Eqs. (21) and (22), K(s,) ds, can be calculated as 
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If both Eqs. (17) and (27) are substituted into Eq. (5 ) ,  

is obtained. 

Step 3: Calculation of rnl(rn) 

Intergrating Eq. (23), 
m, - m,  = g'Li 

is obtained where m, is the integration constant representing the molarity 
of competing ions at  the top (LI, = 0) of column A. This should be 
independent of the value of 1. Equation (29) can be rewritten, by using 
Eq. (22), as 

m, - m, = s,(L) (30) 
Similarly, we obtain from Eq. (24) 

m,  - m = g'L' 

which can be rewritten, by using Eq. (25), as 

m,  - m = s(L) 

m = m1 + s,(L) - s(L) 

(32) 

(33) 

Now, by eliminating m, between Eqs. (30) and (32), 

is obtained. Further, s,(L) in Eq. (33) can be replaced with r(m,) because 
s,(L) simply represents the value of s, at any longitudinal position L on 
column A, whereas r(m,) represents the value of s, occurring at a position 
L on column i at which the band of molecules with an infinitesimal width 
exists. This can be understood from the physical meaning of Eq. (16) or 
(15). Hence we have 

(34) m = m,  + r(ml) - s(L) 

from which we also have 

1 [ 2Is = dr(m,) 
l + -  

dm, 

(35) 

Equation (34) gives an implicit expression of the function m,(m) occurring 
in the last section at  the bottom of the column with length L. This column 
is characterized by the value of s when g' or g is given (Eq. 25). Therefore, 
the experimental condition can be represented by the parameter s. 

Substituting Eq. (35) into Eq. (28), we obtain 
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(36) 

‘ dm, 
which can be rewritten by using, instead of g‘ and 8, g and 

as 

The reduced diffusion parameter Bo (Eq. 37) has a dimension of length. 
In both Eqs. (36) and (36’) the factor 

dr(m,> 
dmA 
dr(m,) = ” 

1 +- 
- ‘ dmA 

measures the partition of molecules in the interstitial liquid in column 1 
(see Eqs. 10 and 12). 

Equation (36) or (36’) represents, with Eq. (34), the chromatogram 
f, as a function of m by using m, as an intermediate parameter. When 
the column has a macroscopic length and the slope g‘ or g of competing 
ions has a finite value (not too close to zero), thenf,(m) is normalized such 
that 

m 

f , (m)dm = 1 (39) 
J m i n  

which is common practice (8). 

factor 
Finally, the shape of the chromatogram fs(rn) is governed mainly by the 

1 - - Cr(mi)  - s12/40g‘s 
~ 4 ~ e g i s  

or 

- e-  [r(m+) -sI2/4eotzs 

J4xe0gs 

in Eq. (36) or (36’). This represents a Gaussian distribution concerning 
the parameter r with the maximum value at r = s. On the other hand, 
Eq. (34) shows that when r(mA) = s, then m, = m. This means that the 
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value of m which fulfills the relationship 

r(m) = s 
or 

11 (40’) m = -;{[(x’ + 1)cp‘qs + (cp’rni” + I ) X ‘ + l ] l ’ ( X ’ + l )  - 
1 

cp 

(see Eq. 11) represents approximately both the molarity of the ions at  
which the maximum height of the chromatographic peak occurs and the 
molarity at which the center of gravity of the peak is eluted. It should be 
noted that Eq. (40’) is identical to Eq. (A25). This represents the 
elution molarity of the sharp peak occurring provided there is no longi- 
tudinal diffusion of molecules in the column. In a subsequent paper (9) 
it will be shown numerically that the theoretical chromatogram has a shape 
almost identical to a Gaussian shape. 

The Case When x‘ = CQ 

It can be understood from the physical meanings of the parameters x’ 
and x (see Appendix I) that to change the value of x’, while keeping the 
value of the parameter 

5 = x/x‘ (41) 
constant, corresponds to considering homologous molecules with different 
dimensions. We consider here an extreme case when the molecule has an 
infinite value of x’ and a finite value of t, or when the molecule has 
infinite dimensions. It is easy to show that, for molecules with infinite 
dimensions, Bay (Eq. Al) or B, (Eq. 10) increases stepwise from 0 to 1 
with an increase of mdv or m, at a critical value: 

This means that, provided there is no longitudinal diffusion of sample 
molecules nor competing ions in the column, the chromatogram should 
always be a sharp peak appearing at  molarity mo of the ions. This is 
independent of both the length of the column and the slope of the molarity 
gradient of the ions. Therefore the contribution, denoted by fn(mn), of 
the band of molecules eluted from a column 1 to the total chromatogram 
can be represented, instead of by Eq. (1 7), as 

*If the factor (kT/&)((ln z)/x’) does not converge to zero when x’ tends to infinity, 
& + (kT/E)((ln t ) / x ’ ) .  t. in Eq. (42) should be replaced with the apparent value: &,,, 
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which is independent of s,. On the other hand, m, is always related to m 
through Eq. (33 )  or by the relationship 

s, - s = m - m, 

Therefore, the quantity v(m,) dm, which is obtained by substituting 
Eq. (33') into the term s, - s in Eq. (27) and by replacing ds, with dm,", 
I.e., 

(33') 

represents the probability that, when the mean molarity of the ions in the 
last section at  the bottom of the column with length L is m, the local 
molarity in that section is between m, and m, + dm,. Hence the chro- 
matogram f ,(m) can be represented as 

m 

which is a Gaussian distribution with both the maximum height and the 
center of gravity always at  

m = mo (46) 
(for mo, see Eq. 42). The standard deviation of the distribution f,(rn) 
(Eq. 45) can be expressed in terms of the range of molarities of competing 
ions, as 

d = J28g's = J G s  

d = J r n g '  = J Z L g  

(47) 

(47') 

Equation (47) can be rewritten, by using Eqs. (20), (25), (26), and (37), as 

The standard deviation of the chromatogram also can be represented in 
units of both elution volume V and reduced elution volume 

v, = v/a (48) 
by dividing Eq. (47') by g' and g, giving 

0" = $E (49) 

*To be precise, the quantity obtained by substituting Eq. (33') into the term s1 - s 
in Eq. (27), by replacing m - mA with ml - m, by replacing dsA with dmA, and by 
again replacing mA - m with m - mA. 
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respectively. Both oy and oyo are independent of the slope of the molarity 
gradient, and increase with an increase of L’ and L,  respectively. This is 
a natural conclusion since the chromatogram occurring provided there is 
no longitudinal diffusion in the column is a sharp peak independent of 
both the slope of the molarity gradient and the length of the column 
(see above). 

It is easy to show that Eq. (40‘) reduces to Eq. (46) when x‘ approaches 
infinity and when 5 is constant. In a subsequent paper (9) it will be shown 
numerically that Eqs. (36) and (34) or Eqs. (36’) and (34) reduce to a single 
equation, Eq. (49, a t  the same time (Figs. 2 and 3 in Ref. 9).  This is 
shown theoretically in Ref. 8. 

DISCUSSION 

Classical theories of adsorption chromatographies were developed over 
40 years ago by Wilson (14, DeVault (16), and Weiss (17) for stepwise 
chromatography on the basis of simple assumptions of (a) instantaneous 
equilibrium of adsorbed phase and solution and (b) no longitudinal diffu- 
sion in the column (cf. the last paragraph in Appendix 11). [The terminol- 
ogy “stepwise” includes, of course, the case when the development of the 
solute on the column is carried out by using the same solvent as that of 
the sample solution. In HA chromatography, however, the solvent used 
for the development usually is different from that of the sample solution 
(see the “Introduction”).] The relation of these theories to the theory 
developed earlier (2-6) for gradient chromatography, also based on both 
assumptions (a) and (b), was discussed in Ref. 7. This is reviewed (with 
some modifications) in Appendix 11, limiting the case within small sample 
loads. Thus there is a fundamental difference in mechanisms between 
stepwise and gradient chromatographies (Appendix I1 ; see also Appendix 
111). A more explicit explanation for this difference is given in Ref. 8. 

Stepwise and gradient chromatographies are also different in the 
following two respects. First, the equation representing the stepwise 
chromatogram (with small sample loads) involves the parameter B (see 
Eq. A35 or A35’). B represents the partition of molecules in the mobile 
phase, taking a constant value throughout the chromatographic process. 
In other words, the chromatographic process is independent of the mech- 
anism itself due to which the parameter B takes the given value. As a 
result, even with gel chromatography, it is possible to assume a partition 
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B and to consider the elution process of the sample on the basis of the 
theory of adsorption chromatography with stepwise elution. This is a 
consideration first developed by Ackers (18). With gradient chromato- 
graphy, however, it is the structure of B, and not the value of this 
parameter, that is directly concerned with chromatography. The structure 
of B is determined by the competition mechanism (see the “Introduction”), 
and this structure can, in general, be represented as the mean structure 
of BA (Eq. 10) concerning A. 

Second, with heavy sample loads when mutual interactions among 
sample molecules play an important role, chromatography depends upon 
the structure of B even in the case of stepwise chromatography. Here also, 
however, the manner of dependence is fundamentally different from 
that with gradient chromatography. In general, it is the shape of the 
adsorption isotherm of sample molecules on the stationary phase that 
determines the structure of B. This shape is determined by both geometrical 
and energetical interactions among molecules existing in the stationary 
phase, i.e., on the crystal surfaces with HA chromatography. The interac- 
tions occurring in the mobile phase or solution are negligible since the 
molecular concentration in solution is small. With HA chromatography 
the geometrical interactions among molecules on the crystal surface can be 
expressed in terms of the probability p that when a new molecule is added 
at random onto the crystal surface, a certain proportion of which is already 
occupied by molecules, it is not superimposed on the already adsorbed 
molecules (19,20). [With single component chromatography, let x be the 
proportion of the crystal surface occupied by molecules that have already 
been adsorbed (see above). In this instance, provided the effect of ener- 
getical interactions among molecules is negligible, the Langmuir adsorp- 
tion isotherm is obtained when p = I - x.] It can be shown, however, 
that the structure of B receives hardly any  influence from the actual value 
o fp  in the case of gradient chromatography (19,20). Therefore, if the effect 
of the energetical interaction is negligible, the chromatography is carried 
out almost independently of both the sample toad and the shape of the 
adsorption isotherm. With stepwise chromatography, however, the 
shape of the chromatogram depends directly upon the shape of the adsorp- 
tion isotherm even in the absence of energetical molecular interaction. 

Classical theories of adsorption chromatographies (see above) are also 
called “equilibrium” theories in contrast with “rate” theories developed 
more recently for the case of stepwise chromatography (11, 21-31). In  
these theories both (a) the adsorption and desorption phenomena and 
(b) the longitudinal diffusion of molecules in the column are treated on 
kinetic bases. It is shown that slow adsorption and desorption rates of 
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molecules (in comparison with the flow rate) also bring about longitudinal 
diffusion. Therefore the total thermodynamic diffusion (defined in the 
“Introduction”) would, in general, be caused both by thermal Brownian 
motion of molecules in solution and adsorption and desorption phenom- 
ena. If the flow rate is low enough, however, the latter effect should be 
negligible. Thermodynamic diffusion (being identical, in this instance, 
with thermal Brownian diffusion) is represented by the last term within 
the divergence term in Eq. (1). [Equation (1) is valid even by taking into 
acount the diffusion associated with slow adsorption and desorption rates; 
in this instance the third term within the divergent term in Eq. (1) is 
concerned with thermal Brownian diffusion, and the diffusion term due to 
slow adsorption and desorption rates does not explicitly appear in Eq. 
(1). It should be assumed (11, 21-31), however, that C and x (being 
related to SZ through Eq. A5) change with each other with time t. As a 
result, Eq. (1) can be rewritten into simultaneous equations for C and x 
(cf. 22, 25-29). In the section entitled “Outline of the Theory,” however, 
the explanation of Eq. (1) was made by neglecting a priori the effect of 
slow adsorption and desorption rates, since this hypothesis is sufficient 
for our purpose.] In the present theory it is further assumed that the 
effect of thermodynamic diffusion is “hidden” within diffusion due to 
heterogeneity in the flow rate in the column or, more generally, that the 
chromatography is a quasi-static process since it is carried out virtually 
independently of the flow rate (see the “Introduction”). In this situation, 
kinetic treatment of HA chromatography would gain no advantages over 
the quasi-static treatment. 

Sorensen (29) reaches the conclusion that the migration velocity of the 
center of mass of a molecular band on the column is unaffected by any 
deviation from quasi-equilibrium conditions (at least with “linear” 
chromatography, which would be the case with small sample loads). A 
similar conclusion is also reached by Giddings on the basis of a random- 
walk consideration for the chromatographic process (11). This conclusion 
would be applied to any microcolumn A, which would mean that, provided 
the effect of thermodynamic diffusion (i.e., both thermal Brownian 
diffusion and diffusion due to slow adsorption and desorption rates) is 
“hidden” within diffusion occurring due to the flow heterogeneity in the 
total column, the chromatography is carried out independently of the 
adsorption and desorption rates of molecules. The chromatographic 
process is virtually a quasi-static process in which the chromatogram is 
independent of the flow rate. 

A differential equation similar to Eq. (1) or Eq. (A39) was given nearly 
30 years ago by Lapidus and Amundson (22) for the purpose of describing 
a stepwise chromatographic process by taking into account the longi- 
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tudinal diffusion in the column. Mathematical solutions for this equation 
were obtained under wider initial conditions than that applied in Appendix 
I11 (Eq. A40). On solving the differential equations in both Ref. 22 and 
Appendix 111, it is assumed for mathematical simplicity that the length 
of the column is infinity. In Ref. 22, however, the physical interpretation 
of the longitudinal molecular diffusion in the column was made on a 
kinetic basis (even in the “equilibrium” treatment in Ref. 22). As a result, 
the conclusion was reached that the mathematical solutions for the 
continuity equation are valid for describing the behaviors of molecules 
on a hypothetical column with infinite length, but that these cannot give 
the shapes of any actual chromatograms of the molecules that are eluted 
out of the column with finite length (22). The situation is different with the 
quasi-static treatment in the present paper in both stepwise (Appendix 
111) and gradient chromatographies. In this treatment the shape of the 
actual chromatogram can be represented by using the mathematical 
solution obtained by assuming that the column has an infinite length, 
since the flow of molecules that proceeds backward on the column is 
negligible (see Appendix 111). 

However, on calculating the theoretical chromatogram, Sbrensen 
(29,30) introduced the following assumptions in a somewhat implicit way. 
Thus he assumed (a) that the longitudinal thermal Brownian diffusion 
in a column (see above) is negligible in comparison with both diffusion due 
to the flow heterogeneity and diffusion occurring associated with adsorp- 
tion and desorption phenomena (cf. the last line on p. 200 in Ref. 29), 
and (b) that the last diffusion occurs within the column independently of 
the total column length. Under these assumptions the chromatogram for 
any finite column length might be calculated by using a boundary condi- 
tion for an infinite column (29,30). It has explicitly been shown (29, 30) 
that the equation that is equivalent to Eq. (A34) can be derived for the 
special case when the elution velocity is low (but not too low, in order for 
thermal Brownian diffusion to be negligible). 

As Sorensen points out (29,30), the equation representing the molecular 
distribution as a function of both column position and time (or elution 
volume) that he has derived (under some approximations) is much simpler 
and more tractable than those derived by other authors (22,27,28) on the 
basis of the same differential equation (Eq. 1, but see page 346). I t  should 
be noted, however, that in Bak’s (26) or Sbrensen’s (29, 30) equation, 
the molecular distribution is represented in terms of R (or c,,, according 
to the Sbrensen’s notation) in contrast with the equations in Refs. 22, 
27, and 28 where the distribution is represented in terms of C. At least 
under suitable approximations simpler equations might, in general, be 
obtained in the case of Cl than with C. This is because, with stepwise 
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chromatography, it is the flux with density Q, and not the flux of density 
C,  that is chromatographically fundamental, at  least when adsorption and 
desorption rates are high in comparison with the mean flow rate (cf. 
Appendix I1 and Ref. 8).  

However, the following fundamental assumption involved in Refs. 
29 and 30 is unreasonable (although it does not influence the above 
argument). Thus it is assumed that the chromatogram for a column of 
given length L (or x in Refs. 29 and 30) should be represented in terms of 
the distribution in R (or clot in Refs. 29 and 30) and not by the distribution 
in molecular concentration C in the mobile phase [or c(o) in Refs. 29 
and 301 as a function of elution volume V (or time t ) .  Under this assump- 
tion it is not Eq. (A35) or (A35’), but rather Eq. (A34) that gives a chro- 
matogram (see Appendix 111). S~rensen mentions (29) that this assumption 
is justified by the fact that “both the ‘mobile’ and the ‘stationary’ peak 
are eluted when the peaks suddenly reach the end of the bed of stationary 
phase, i.e., the end of the chromatographic column. The elution profile is 
therefore the sum of the two peaks.” This statement is unreasonable 
because it is molecules in the mobile phase that actually migrate on the 
column. For any vertical column sections involving that existing at the 
bottom of the column, it is through the mobile phase that molecules are 
transported. This means that it is concentration C in the mobile phase 
within the last section at  the bottom of the column, and not the total 
density Q in that section, that represents the molecular concentration in 
solution that has just been eluted out of the column. Experimentally, 
it can be observed directly by using colored molecules like cytochrome c 
that the width in the molecular band migrating on the column, i.e., the 
volume of the solution over which the band within the column appears 
is generally smaller than the volume of the solution that is eluted out of the 
column and over which the chromatogram appears. This can be explained 
only by assuming that it is C (and not Q with R 2 C) that represents a 
chromatogram (cf. the “Introduction”). It is highly desired that the 
experimental analysis in Ref. 30 be reexamined, since it is designed in 
a very rigorous way. 

APPENDIX I 

In a canonical system 6Y in a column, the total Helmholtz free energy 
should be at  a minimum (see the “Introduction”). The chemical potentials 
should be equal between solution and the adsorbed phase for molecules 
of any components of the mixture and for competing ions. When adsorp- 
tion occurs onto a single type of crystal sites (see the “Introduction”) 
and when the total density of sample molecules in 6 V is small, the partition 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



GRADIENT HYDROXYAPAT!TE CHROMATOGRAPHY. I 349 

B,, for a given molecular component in solution (i.e., the ratio of the 
amount in solution to the total amount in SV) can be represented as a func- 
tion of only molarity m,, of competing ions in solution. The function 
BaV(m,,) is given by Eq. (1) in Ref. 2. This can be rewritten with a slight 
modification as 

where 
q = @zexeJkT 

In Eq. (AI) the term q’mlY represents the “force” endowed with the 
competing ions which drives the sample molecules out of the crystal 
surfaces. The ions drive the molecules through a competition mechanism. 
[The “driving force” q‘m,, was written as A, or A in earlier papers ( 2 6 ) .  
A is defined as the product of the absolute activity of the ions and the 
exponent of the adsorption energy of an ion onto a crystal site (where 
energy is defined as positive and expressed in units of kT).] It can be 
assumed (5,6) that cp’ is essentially positively constant throughout the 
chromatographic process. This means that “driving force” is virtually 
proportional to molarity mdV. x’ is the average number (in the equilibrium 
state) of adsorbing sites of HA on which the adsorption of competing ions 
is impossible due to the presence of an adsorbed molecule. x’ therefore 
represents the effective dimensions of the sample molecule. In Eq. (A2), 
x is the average number (in the equilibrium state) of functional groups per 
molecule that react with sites of HA; --E ( E  > 0) is the adsorption energy 
of a functional group of the molecule onto one of the sites of HA; T 
is the absolute temperature; k is the Boltzmann constant; and p and z 
are positive constants related to the properties of the column and the 
sample molecules, respectively. Thus, neglecting a solvent effect, z represents 
the number of effective geometrical configuration(s) of a sample molecule 
on the crystal surface (in the equilibrium state) and is related, in general, 
to both the distribution of functional groups on the molecular surface 
and the flexibility (or the rigidity) of the molecular structure. [It can, there- 
fore, be considered that, in Eq. (A2), Q = -kT(ln q-ln @)= -x-E-kTln z 
represents the free energy per molecule on the HA surface (neglecting 
the solvent effect), whereas - X E  represents the energy per molecule on the 
HA surface.] In the special case where the flexibility (or the rigidity) of 
the molecular structure is the same in both solution and the adsorbed state, 
which should be true at least with rigid or native molecules, z should be 
related only to the distribution of the adsorption groups on the molecular 
surface. Therefore, provided E is large, z should represent the number of 
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energetically most stable geometrical configuration(s) of the molecule on 
the crystal surface. 

In the competition model the energetical interaction between the 
sample molecule and the competing ion is not taken into consideration. 
In some instance, however, it can be assumed that the apparent x' value is 
changed due to this interaction (32). 

APPENDIX II 

On the basis of Eq. ( I )  we here derive two differential equations repre- 
senting idealized chromatographic processes that should occur in the 
absence of any type of longitudinal diffusion in the column. These equa- 
tions are valid with stepwise and gradient chromatographies, respectively. 

As a first step in this procedure, let us consider an intermediate case 
where only thermodynamic diffusion survives. In this instance, Eq. (1) 
reduces to 

an 
at 

div, (vn - Dtherm grad, C )  + - = 0 

I t  is possible to rewrite Eq. (A3) into two different forms: 

a2c a(lvln) an 
Dlherm = at 

+ -  
and 

where 
x = (1 - By2  

represents the mean molecular density at time t on the crystal surface in 
a vertical column section at  position L. By using Eq. (2) it is easy to derive 
the general relationship occurring among three types of molecular den- 
sities: 

I R = C + x  (A5) 

In order for the ideal cases of no longitudinal diffusion to be attained 
from this intermediate case, let us examine the following two assumptions: 
(a) that the longitudinal diffusion of molecules does not occur in solution 
in the interstices of the column, and (b) that the longitudinal diffusion of 
molecules in solution is carried out independently of the interaction with 
crystal surfaces. In general, i t  is reasonable to assume that the diffusion 
cannot occur on the crystal surfaces. 
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Assumption (a) can be written simply as 

Dtherrn = (A61 
If Eq. (A6) is substituted into Eq. (A3’), and both Eq. (20) and the relation- 
ship 

1 dV 
U dt I v I  = - - B 

(where U is a macroscopic constant representing the pore volume per unit 
length of the column and V is the elution volume) are applied, then 

is obtained. [It should be noted that, by its definition (Eq. 20), L‘ represents 
the total interstitial volumes involved between the top and a position L 
of the column.] This is DeVault’s equation in classical theories of adsorp- 
tion chromatography (16) (see below). Equation (A8) still conserves the 
property as the continuity equation for the molecular flux on the column, 
the first and the second terms on the left-hand side representing the 
divergence of the flux and the time change of the density of the flux, 
respectively; time t is transformed into elution volume V, however. 
Equation (A8) should represent a chromatographic process occurring 
provided there is no longitudinal diffusion in the column. 

Assumption (b) means that the distribution of molecules in solution 
follows Fick’s second law, which can be represented as 

ac a2c - -  at Dtherrn = 

If Eq. (A9) is substituted into Eq. (A3”) and both Eqs. (20) and (A7) are 
applied, then 

is obtained. This is Wilson’s equation in classical theories of adsorption 
chromatography (15) (see below). Equation (A10) means that, provided 
the diffusion of molecules in the interstitial liquid of the column occurs 
independently (Eq. A9), then the chromatographic mechanism is also 
independent of the molecules in solution, except for the fact that the 
divergence of the mean flux or the mean migration rate of molecules on 
the column (the first term on the left-hand side of Eq. A10) is governed 
by the partition B of molecules in solution, so that the chromatography is 
carried out independently of the longitudinal diffusion of molecules in the 
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column, following Eq. (AlO). Let us now introduce assumption (a) or Eq. 
(A6), which leads to the conclusion that, provided there is no longitudinal 
molecular diffusion in the column, the chromatography is carried out 
following Eq. (A10). In fact, the only way in which the chromatography 
can be carried out without the effect of longitudinal molecular diffusion 
in the column should be that the mechanism of chromatography is inde- 
pendent of the molecules in solution. 

We now have two different differential equations, Eqs. (A8) and (AlO), 
that should represent the idealized chromatographic processes occurring 
in the absence of any longitudinal diffusion in the column. Whether or not 
these equations are valid depends upon whether or not they are self- 
consistent with the physical meanings that are involved in them under the 
given experimental conditions. 

Let us first examine Eq. (A10) for the case of stepwise chromatography. 
Under this experimental condition, Eq. (A10) is self-inconsistent with the 
physical meaning of the independence of the chromatographic mechanism 
from the molecules in solution (see above). In fact, the second term on the 
left-hand side of Eq. (A10) is still related to the interstices of the column; 
the situation where the change d ~ ,  with time, of the density or the amount 
of molecules on the crystal surface is directly related to the change dV, 
also with time, of the elution volume, i.e., the dimensions of the interstitial 
volume of the column, but that it is independent of the amount of mole- 
cules partitioned in the interstices evidently is contradictory. 

Let us examine Eq. (A10) for the case of linear gradient chromato- 
graphy. In this instance, molarity m of competing ions in a given section 
of the column increases linearly with increase in elution volume V, or 
we can write 

dmldV = g' (A1 1) 
where g' is a positive constant representing the slope of the molarity 
gradient of competing ions (expressed in units of molarity per volume). 
Therefore, introducing a parameter 

s = g'L' = g L  (A12)* 

which has a dimension of molarity, Eq. (AlO) can be transformed into 

'g (= ag') is a positive constant representing the slope of the molarity gradient of 
competing ions on the column, expressed as the increase in molarity per unit length 
of the column (measured from the bottom to the top). 
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where B is a function of only m (cf. Eq. A1 or A24). In gradient chro- 
matography, it is Eq. (A13) rather than Eq. (AlO) that has a fundamental 
physical meaning. We show now that Eq. (A13) is self-consistent with 
the physical meaning which is involved in it, that the chromatographic 
mechanism is independent of molecules in solution. The first term on the 
left-hand side of Eq. (A13) conserves the physical meaning of the diver- 
gence of the flux of molecules on the column in a sense such that the flux 
is concerned with an abstract flow of molecules that move along a type of 
molarity gradient of competing ions, since s has a dimension of molarity. 
The second term is also related only to molarity of competing ions; 
molarity m originates in time t in the fundamental equation, Eq. (A3). 
However, the molarity of competing ions is an intensive quantity [repre- 
senting the “force” that drives sample molecules out of the crystal surface 
(to be precise, the quantity being proportional to the “force”; see 
Appendix I)], so that the second term in Eq. (A13) is no longer related to 
the interstices themselves of the column with an extensive property. There- 
fore the chromatographic mechanism should be independent of molecules 
in solution except for the fact that the migration rate of molecules along 
the “molarity gradient” of the ions is governed by the partition B of 
molecules in solution (the first term on the left-hand side of Eq. A13). 
However, B is a function of molarity m of the ions. B involves a parameter 
p that is related to interstices of the column [see Eq. A1 (i.e., Eq. A24) 
and Eq. A2]. However, p is constant throughout the chromatographic 
process, so that p does not play any role in the above argument. 

It should be noted that, although Eq. (A13) represents the chromato- 
graphic process, it no longer represents the continuity equation for the 
actual molecular flux in the column. Thus Eq. (A13) or Eq. (A10) does 
not represent the conservation of the amount of molecules in the inter- 
stices, including the crystal surfaces, of the column section, because Eq. 
(A13) is no longer concerned with molecules in the interstitial liquid in 
the column (see above). Nevertheless, Eq. (A13) conserves the property 
of the continity equation for an abstract flux of molecules migrating along 
a “molarity gradient” of competing ions (i.e., the gradient of the quantity 
s; see above). However, introducing a new parameter C defined as 

B 
1 - B  C = -  X 

Eq. (A13) can be rewritten as 

(A13‘) 
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From the similarity of the form of Eq. (A13’) to that of Eq. (Al3), it is 
possible to consider that C also represents some “density,” and that the 
first and the second terms on the left-hand side of Eq. (A13’) represent 
the divergence of the flux along the gradient of the parameter m, i.e., 
the molarity gradient in the ordinary sense and the change in “density” 
C occurring with a change in the parameter s, respectively. s is now 
considered to change with time t. Here it is possible to give C a physical 
meaning of concentration of molecules in the interstitial liquid of the 
column, since C defined by Eq. (A14) is mathematically identical with C 
defined by both Eqs. (2) and (A4). By extending Eq. (A13’) to an equation 
in which account is taken of the longitudinal diffusion in the column, the 
fundamental differential equation for gradient chromatography can be 
obtained. This is Eq. (17) in Ref. 8 which is reproduced as Eq. (A41). 
This equation concerns the abstract molecular flux migrating along the 
gradient of molarity m of competing ions (see above; cf. the “Introduc- 
tion”). 

Let us examine Eq. (A8) for the case of stepwise chromatography. 
Equation (8) has been derived by using Eq. (A6), which simply states that 
longitudinal molecular diffusion does not occur in the interstices of the 
column. [For the derivation of Eq. A10 or A13 also, the assumption of 
no longitudinal molecular diffusion in the interstices of the column (Eq. 
A6) apparently is used. However, this assumption was introduced after 
Eq. A9 had been introduced (see above). As a result, Eq. A6 does not 
mathematically participate in the derivation of Eq. A10. As far as Eq. 
A10 is concerned, the condition of no longitudinal diffusion in the column 
can be derived even without the assumption of no longitudinal diffusion 
in the interstices of the column. This condition is derived through the 
logic that the state of no longitudinal diffusion should be achieved provided 
the chromatographic mechanism is independent of the molecules in the 
interstices of the column since, on the crystal surfaces, there is no diffusion. 
This mechanism spontaneously precludes the possibility of the existence 
of longitudinal molecular. diffusion in the column.] Now the statement 
of no longitudinal molecular diffusion in the interstices of the column is 
a priori inconsistent with the fundamental assumption of chromatography 
that the mobile and stationary phases coexist on the column. This is 
because the coexistence of the two phases is achieved through molecular 
diffusion itself, and it is physically impossible to separate the longitudinal 
diffusion from the total diffusion and to fix only the former (without 
destroying the chromatographic mechanism). I t  should be noted, however, 
that if the migrating band of molecules on the column has an infinite 
width, the effect of the longitudinal diffusion should be canceled out in the 
interior of the band, and Eq. (A6) should apparently be fulfilled. I t  would 
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therefore be possible to imagine that the molecular band under considera- 
tion is part of the band with infinite width; the migration of this part can 
be described by Eq. (A8). [At least with the quasi-static process (see the 
“Introduction”) it is possible to consider that the actual column is part 
of the imaginary column with infinite length; cf. Appendix 1111. The 
problem is now whether or not the assumption of the existence of a 
molecular band with infinite width is self-consistent with Eq. (A8). It can 
be shown on the basis of Eq. (A8) that, at  least when B is constant (which 
is the case with small sample loads), then the width of the band should 
be maintained constant during the chromatographic process. This enables 
us to assume, during the whole process of chromatography, a band with 
a width that is larger than any given constant finite value, i.e., the band 
with an infinite width. 

Finally, let us examine Eq. (A8) for the case of gradient chromato- 
graphy. In this instance, Eq. (A8) can be transformed into 

On the basis of Eq. (A1 5 )  it can be shown that, at least when B is a function 
of only m and when B increases monotonically with an increase of m 
(Eq. A1 or A24 fulfills these two conditions), then the width of the band 
should decrease monotonically toward zero with the chromatographic 
process. Therefore it is impossible to assume the existence of the band 
with a width that is larger than any fixed finite value during the chromato- 
graphic process. 

Hence it can be concluded that, provided there is no longitudinal 
diffusion in the column, it is DeVault’s equation, Eq. (A8), that is valid 
in stepwise chromatography, whereas it is a Wilson-type equation, Eq. 
(A13) or (A13’), that is valid in gradient chromatography. A direct 
mathematical proof for this statement is given in both the Theoretical 
section in Ref. 7 and the Theoretical section in Ref. 8. 

As B is constant with stepwise chromatography with small sample 
loads (see above), introducing a parameter 

W =  BV (A10 

Eq. (A8) can be rewritten more simply as 

a n  asz 
a r  aw - + - = o  

With small loads when the band with an infinitesimal width is formed 
initially (i.e., when V or W = 0) at the top (L‘ = 0) of the column, the 
initial condition for Eq. (A8’) can be written, by using a delta-function, as 
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Rw=o = 6(L') 

R = 6(L' - W )  

Under this condition, Eq. (A8') has a solution 

Due to the property of the delta-function, Eq. (A18) only shows symboli- 
cally that the band with a very small width is formed at  a longitudinal 
position L' or L (see Eq. 20) on the column at which the relationship 

L' = w (A191 

or 
L' = BV 

L = BVo 

(A 19') 

(AI 9") 

is fulfilled (for Eq. A19", see Eq. 48). In other words, a sharp chromato- 
graphic peak is obtained at  reduced elution volume 

Vo = L/B (A 19"') 

As B is a function of m with gradient chromatography with small loads 
by using a column with length L. 

(see above), introducing a function 

where mi, represents the initial value of m at the beginning of the molarity 
gradient, Eq. (A13) can be rewritten more simply as 

(A13") 

With small loads when the band with an infinitesimal width is formed 
initially at  the top of the column [where L' = 0, i.e., s = 0 (Eq. A12) 
and m = mi, (Eq. A20)], the initial condition for Eq. (A13") can be 
written as 

x r = o  = w 
Under this condition, Eq. (A13") has a solution 

x = 6(s - r )  (A23 
This means that the band of molecules with a very small width is formed 
at  a longitudinal position L' or L on the column at which the relationship 

s = r(m) (A231 
is fulfilled. The partition Bd, of sample molecules in solution in system 
dY is given by Eq. (AI). In the absence of longitudinal diffusion in the 
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column, it is sufficient to consider a column section instead of 6 V ;  B,, 
and may in Eq. (AI) can be replaced with B and m, respectively. Hence 
we have 

1 
B(m) = 

1 + q(cp’rn + l )+ 

By using Eqs. (A24) and (A20), Eq. (A23) can be rewritten as 

Equation (A25) gives, as a function of s, the molarity m of competing 
ions at  which the sharp chromatographic peak is eluted out of the column. 

Equation (A25) is the fundamental equation that is used in earlier works 
( 2 , 5 , 6 )  which originally was derived as Eq. (15) in Ref. 2 by using a 
different method. Even without awaiting the theory in which the longitu- 
dinal molecular diffusion is taken into consideration, it is reasonable to 
assume that the elution molarity of a mean part of the actual chromato- 
graphic peak can be represented by Eq. (A25). This has been verified 
experimentally [2, 6 (Appendix IV), 7 (Theoretical section F ) ;  see also 
Appendix I1 in Ref. 91. 

Historically, it is Eq. (A10) that was derived for the first time by Wilson 
(15) for the purpose of describing the elution process in stepwise chro- 
matography. The method of derivation is different from that shown in 
this Appendix (or originally in Ref. 7), and the equation is expressed 
somewhat differently in Ref. 15. In Ref. 15 it is simply assumed (a) that 
an instantaneous equilibrium is attained between the solution and the 
adsorbed material on the column, and (b) that the effect of the longitudinal 
diffusion in the column is negligible. I t  is also assumed that the interstitial 
volume per unit length of the column is negligible. Under this assump- 
tion, Eq. (A10) might represent a continuity equation for the actual 
molecular flux in the column. DeVault (16) modified Wilson’s equation 
(Eq. A10) in order for it to behave as the continuity equation (for the 
actual flux) even when the interstitial volume of the column has a finite 
value; this is Eq. (A8). In Ref. 16, Eq. (8) is expressed somewhat differ- 
ently however. These theories, with a further theory developed by Weiss 
on the basis of Wilson’s equation (17), are categorized as classical theories 
of adsorption chromatography. However, all these theories are valid only 
for stepwise chromatography. 

APPENDIX 111 

When dealing with stepwise chromatography, the longitudinal dis- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



358 KAWASAKI 

tribution of molecules on a column or the shape of the molecular band 
migrating on the column can be represented as a sum of molecular bands 
migrating on respective microcolumns and as a function of elution volume 
V or the parameter W (Eq. A16). In parallel with Steps 1-3 in the “Theo- 
retical” section, let us here calculate (1’) the contribution of the band of 
molecules migrating on a column A to the total band on the actual column 
as a function of local elution volume V,  hI on the column A or the parameter 

w, = sv, (A26) 

for each A by assuming that there is no thermodynamic longitudinal diflusion, 
(2’) the distribution of the flow among diflerent microcolumns, and (3’) the 
relationship between the local elution volume Vn hA, i.e., the parameter 
W,  and the actual elution volume V,  i.e., the parameter W. Since W, can be 
considered as a function of L’ (see below), the macroscopic molecular 
density R on the actual column can be represented as a function of L’ as 

where R, represents the molecular density in the interstices, including the 
crystal surfaces, on the column A. L‘, L;, and 9(L’J are defined by Eqs. 
(20), (19), and (21), respectively. [ W, is different from VL only by a constant 
factor B (Eq. A26). V, can be considered as a function of L; because, 
in a column A, the elution volume V, 61 should depend upon the apparent 
total interstitial volumes Li 61. L; is a function of L (Eq. 19), and L can be 
considered as a function of L‘ (Eq. 20). Therefore, W, can be considered 
as a function of L‘. The physical meaning of Eq. (A27) can be understood 
from analogy with the meaning of Eq. (5 ) . ]  

Let us perform the calculation of Q, (Step 1’). Through a procedure 
similar to the derivation of Eq. (A8), but with some attention to the 
fact that the pore volume per unit length of the column A depends micro- 
scopically upon the longitudinal position, DeVault’s equation, representing 
the idealized elution process occurring on a column A provided there is 
no thermodynamic longitudinal diffusion, 

can be derived. It can be assumed that B, is virtually independent of 
the microscopic variation in pore volume per unit length of the column I 
[see the section entitled “Step 1 : Calculation of f,(m,, s,)”]; this means 
that B, in Eq. (A28) can be replaced by the macroscopic parameter B 
(Eq. 2), which is independent of both Li and V,. Hence, by using Eq. 
(A26), Eq. (A28) can be rewritten as 
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which can be compared with Eq. (A8'). 
With small sample loads when the band of molecules with an infinitesi- 

mal width is formed initially at  the top of the column, or under the initial 
condition 

[ ~ , l w A = O  = 6 ( W  

R, = 6(L:, - W,) 

Eq. (A29) has a normalized solution 

(cf. Eqs. AI7 and Al8). Equation (A31) represents the contribution of the 
molecular band on a column A to the total band on the actual column as 
a function of W, when L',  is  given. 

The calculation of 9(L',) (Step 2') has already been done (see Eq. 21). 
Now, if both Eqs. (A31) and (21) are substituted into Eq. (A27), 

is obtained. 
Let us perform the calculation in Step (3'). Instead of directly calculating 

the function W,(L', W ) ,  it is sufficient to give a proof for the following 
relationship : 

The equality between the extreme left- and the extreme right-hand side in 
Eq. (A33) gives the function W,(L', W )  in an implicit form. Now, let us 
give a proof for Eq. (A33). Thus, first, W ,  bA has a physical meaning 
of a sum of interstitial volumes involved between the top and a position of 
the column A through which the molecular band with an infinitesimal width 
passes during the whole process of chromatography. This is evidently equal 
to the sum L; 82 of the interstitial volumes involved between the top and 
this position of the column A. Thus the first equality in Eq. (A33) has 
been obtained. Second, due to its definition, 9(LA)dLl, can represent a 
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probability that, when the center of the actual molecular band is at  position 
L on the column or the position at  which the “distance” from the column 
top is equal to L’ (measuring as a sum of interstitial volumes), then a mole- 
cule exists at positions where the “distance” to the position L are between 
IL; - L‘I and IL; - L‘J + dL;/2. LI, - L‘ > 0 and LI, - L‘ < 0 repre- 
sent the cases when the position of the molecule is closer and less close to 
the column top than the position L, respectively. This is because, on a 
column I ,  the total interstitial volumes involved between the position L 
and the position of the molecule under consideration should be equal to 
(L; - L’) i5I and (L’ - L;) d I ,  neglecting the infinitesimal fluctuation 
(dLA/2) 61, respectively. The probabilities of the occurrence of both these 
volumes (equal to ILL - L’I h I )  should be equal to the probabilities of 
the appearance of a molecule at  the two positions on the actual column 
where the “distance” to the position L are equal to ILI, - L’I, respectively. 
Third, it is possible to give W a physical meaning of the sum of interstitial 
volumes involved between the top and a longitudinal position of the 
actual column through which a molecular band with an injinitesimal width 
passes during the whole process of chromatography provided there is no 
longitudinal diffusion because, under this hypothetical condition, Vn should 
be equal to V, and Eqs. (A16) and (A26) show that W ,  is equal to W. 
As molecules at  the center of the band should apparently stay at the 
same position as in the absence of longitudinal diffusion, W can also 
represent the sum of interstitial volumes involved between the center of 
the band, i.e., the position L defined in the second step of the consideration, 
and the column top. This means that the parameter L’ involved in the 
function $(L;) (see Eq. 21) can be replaced with W. Thus the second 
equality in Eq. (A33) has been obtained. Lastly, it is possible to denote by 
L’ the sum of interstitial volumes involved between the column top and 
the position of any part of the actual molecular band. By using this new 
notation, the factor LI, - W [or the factor L; - L‘ in the function 9(L;), 
given the physical meaning in the second step of the consideration] can be 
replaced with -(L‘ - W ) .  The minus sign is necessary because, when 
L; > L’ and L; < L‘ (in the old expression), the “position” L’ (in the 
new expression) should be closer and less close to the column top than 
the “position” W ,  respectively, the symbol W being common to both the 
old and new expressions. However, the value of 9 does not change if the 
factor -(L‘ - W )  is replaced with L‘ - W. This means that the factors 
L; and dL; appearing in the third term in Eq. (A33) can be replaced directly 
with L’ and dL‘, respectively. Thus the last equality in Eq. (A33) has been 
obtained. 

If the equality between the extreme left- and the extreme right-hand 
side in Eq. (A33) is substituted into the right-hand side of Eq. (A32), then 
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is obtained, which can be compared with Eq. (A18). It is evident that, at  
a limit of 0 + 0, Eq. (A34) reduces to Eq. (A18). It can be seen in Eq. 
(A34) that, if R is considered as a function of L', Q represents a Gaussian 
distribution. W represents a sum of interstitial volumes involved between 
the column top and the longitudinal position at which the center of the 
molecular band exists (see above). The theoretical chromatogram for 
a column of length L (denoted by f L )  can now be represented as the con- 
centration C (=  fL) of molecules in the interstitial liquid within the last 
section at  the bottom of the column of length L, and as a function of 
elution volume V as 

It is often more convenient to represent the chromatogram in terms of 
Vo (Eq. 48) rather than of V. In  this instance, writing f L o  instead of f L ,  
we have 

(A35') 

When the column has a macroscopic length, both f L  and f L o  are nor- 
malized such that 

Equation (A34) can also be obtained as a solution of the continuity 
equation for the molecular flux on the column (Eq. 4), or the continuity 
equation represented by using, instead of time t, elution volume V as 
a variable. Thus by introducing the parameter 

aD O = -  
1 dV 

and by using Eqs. (20) and (A7), Eq. (4) can be rewritten as 
an 
av div,. (&I - OBgrad,. 0) + - = 0 

where the arrow shows that the term under the arrow is a vector. 
We confirm below the fact that 0 (Eq. A37) is constant. This means that, 

in Eq. (A38), time t is not involved as the Farameter. This latter is necessary 
in order for Eq. (A38) to be compatible with the experimental fact that 
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both the shape of the chromatogram and the elution molarity are inde- 
pendent of the flow rate (see the “Introduction”). An equivalence of the 
argument below has already been made in Ref. 7. Thus it is possible to give 
M (see Eq. A7) a physical meaning of the total area, projected on the 
surface of the vertical column section, of the interspaces among H A  
crystals being packed, i.e., the total area for the part of a column section 
through which the solution can pass in the chromatographic process. 
M is macroscopically constant. Fick’s first law shows that the amount of 
molecules, dQ/dr, that pass through the area M by diffusion (caused by the 
microscopical heterogeneity in M) per unit length of time should be 
proportional to the density gradient, -grad, R, with a proportionality 
constant aBD. [Fick’s first law usually is stated in such a way that the 
amount of molecules that pass through a unit area by diffusion in unit 
interval of time, (dQ/dr)/cl, or the molecular flux should be proportional 
to the density gradient, -grad, n, with a proportionality constant BD. 
This statement is equivalent to the statement made above. Cf. the explana- 
tion of the symbol D in Eq. I] .  The quantity dQ/dt should also be propor- 
tional to the mean flow rate IvI of molecules (see Eq. A7), because the 
variation in the flow rate (by which the diffusion under consideration 
occurs) around the mean flow rate of molecules should be proportional 
to the mean flow rate (at least in the range of the flow rate examined 
experimentally; see the “Introduction”). This means that the propor- 
tionality constant in Fick’s law or the quantity MBD should be proportional 
to the mean flow rate IvI or that the quantity uD should be proportional to 
the mean flow rate (dV/dr)/cr of the solvent, thus giving 0 a physical 
meaning of the proportionality constant between M D  and (dV/dt)/a.  It 
will be understood later that the parameter 0 defined by Eq. (A37) is 
identical with 8 introduced in Eq. (21). 

By introducing the parameter W(Eq. A16), Eq. (A38) can be rewritten as 

In  order to find the initial condition for Eq. (A39), the following con- 
sideration is necessary: With small sample loads when a narrow band is 
formed initially at  the top ( L  = 0) of the column, this initial state could 
be replaced approximately with a hypothetical state in which a band with 
an infinitesimal width is formed at  a position ( L  = 0) on the column with 
an infinite length. This column extends even in the minus direction beyond 
the origin. This approximation would be justified by the fact that the 
actual longitudinal diffusion of molecules in the column is essentially due 
to the heterogeneity in the flow rate, so that there should be hardly any 
flow of molecules that proceeds backward on the column. The mathemati- 
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cal calculation on the basis of this approximation might predict, however, 
that a minor part of the molecular band extends over the column top 
immediately after the development of molecules has begun. Therefore it 
would be at least after the distance between the center of the molecular 
band and the column top has reached a macroscopic value that the 
correspondence between the theory and the experiment can be expected. 
It can be assumed that, in this situation, the shape of the theoretical 
peak receives only a slight influence from the approximation of the initial 
state of the molecular band (see above). To calculate the chromatogram 
with a very short column, another approximation would be required. 
(For this calculation, a type of initial condition such as applied in Ref. 4 
or in Appendix I1 in Ref. 7 might be useful.) The concentration of mole- 
cules in the interstitial liquid at  position L on a column with infinite length 
should be virtually equal to the concentration in solution that has just 
been eluted out of the column with finite length L. This is because the 
probability of the occurrence of the flow that proceeds backward on the 
column should be negligible (see above). Hence the theoretical chromato- 
gram for a column of length L can be represented by the concentration 
of molecules in the mobile phase at position L on the hypothetical column 
with infinite length as a function of elution volume V. 

Now, when a narrow band of molecules is formed initially at  the top, 
L = 0, of the column, the initial condition for Eq. (A39) can be written, 
by using a delta-function, as 

R w = o  = 6(L’) 6440) 
Under the condition of Eq. (A40), Eq. (A39) has a solution given by 
Eq. (A34). 

The fact that the same equation, Eq. (A34), can be obtained by using two 
different methods demonstrates that the two methods are equivalent; 
the diffusion parameter 0 defined by Eq. (A37) is identical to 0 intro- 
duced in Eq. (21). 

In Ref. 8 it is shown that Eqs. (36) and (34) or Eqs. (36’) and (34) that 
represent the chromatogram in gradient chromatography are given as a 
solution of the continuity equation for an abstract molecular flux (cf. 
Appendix 11): 

I - B(s, m) c 
div, 

under the initial condition given by 
lim R = 6(m - min) 

s + + o  
mr+min 

where 
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(A431 
I = gv = ge,, 

Equation (A41) (corresponding to Eq. A38 in stepwise chromatography) 
can be compared with Eq. (A13’) (corresponding to Eq. A8 in stepwise 
chromatography). (For details, see Ref. 8.) 
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